Principal components analysis: theory and application to gene expression data analysis
نویسندگان
چکیده
منابع مشابه
Linkage analysis using principal components of gene expression data
The goal of this paper is to investigate the effect of using principal components as a data reduction method for expression data in linkage analysis. We used 45 probes normalized using the Affymetrix Global Scaling that had evidence of high heritability to estimate the first 10 principal components (PC). A genome-wide linkage scan was performed on the 45 expression values and the 10 PCs using 2...
متن کاملNonlinear principal components analysis: introduction and application.
The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal variables and that it can handle and discover n...
متن کاملPersian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملPrincipal components analysis and the reported low intrinsic dimensionality of gene expression microarray data
Principal components analysis (PCA) is a common unsupervised method for the analysis of gene expression microarray data, providing information on the overall structure of the analyzed dataset. In the recent years, it has been applied to very large datasets involving many different tissues and cell types, in order to create a low dimensional global map of human gene expression. Here, we reevalua...
متن کاملPrincipal interactions analysis for repeated measures data: application to gene-gene and gene-environment interactions.
Many existing cohorts with longitudinal data on environmental exposures, occupational history, lifestyle/ behavioral characteristics, and health outcomes have collected genetic data in recent years. In this paper, we consider the problem of modeling gene-gene and gene-environment interactions with repeated measures data on a quantitative trait. We review possibilities of using classical models ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genomics and Computational Biology
سال: 2018
ISSN: 2365-7154
DOI: 10.18547/gcb.2018.vol4.iss2.e100041